Malignancies in HIV

Dr. Edmund Wilkins
Head of the HIV Clinical Trials Unit
North Manchester General Hospital
Outline

• General background

• Today I will break it down:
 • Basic facts
 • Clinical challenges in ADM and non-ADM
 • Management

• Please feel free to interrupt....
ADM and NADM

AIDS-defining malignancies (ADM)
• Kaposi’s sarcoma
• Non-Hodgkin lymphoma
• Primary CNS lymphoma
• Cervical cancer

Non-AIDS defining malignancies (NADM)
• Anal cancer
• Hodgkin disease
• Hepatoma
• Testicular cancer
• Lung cancer
• SCC conjunctiva, mucous membranes
• Many other sites..
Malignancies in HIV-infected individuals: clinical situations

• ADM
 • Associated with low CD4
 • Much commoner in HIV

• Non-ADM
 • Associated with less pronounced immune dysfunction
 • Associated with additional contributory factors that may be increased in HIV-infected patients
Incidence of KS has decreased since introduction of ART

International Collaboration on HIV and Cancer

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Amsterdam</td>
<td>22.7 (53)</td>
<td>7.7 (7)</td>
<td>0.34 (0.14)</td>
</tr>
<tr>
<td>Aquitaine</td>
<td>18.5 (170)</td>
<td>3.3 (18)</td>
<td>0.18 (0.04)</td>
</tr>
<tr>
<td>ASD</td>
<td>15.1 (627)</td>
<td>5.5 (115)</td>
<td>0.37 (0.04)</td>
</tr>
<tr>
<td>CASCADE</td>
<td>10.4 (149)</td>
<td>3.1 (8)</td>
<td>0.30 (0.11)</td>
</tr>
<tr>
<td>DMI-2</td>
<td>15.5 (156)</td>
<td>8.1 (5)</td>
<td>0.52 (0.24)</td>
</tr>
<tr>
<td>HERS</td>
<td>0.4 (1)</td>
<td>0.0 (0)</td>
<td>0.00</td>
</tr>
<tr>
<td>HOPS</td>
<td>21.0 (104)</td>
<td>9.4 (29)</td>
<td>0.45 (0.09)</td>
</tr>
<tr>
<td>MACS</td>
<td>29.3 (189)</td>
<td>4.2 (7)</td>
<td>0.14 (0.06)</td>
</tr>
<tr>
<td>MHCS</td>
<td>0.7 (2)</td>
<td>0.0 (0)</td>
<td>0.00</td>
</tr>
<tr>
<td>RHIHP</td>
<td>0.3 (1)</td>
<td>0.0 (0)</td>
<td>0.00</td>
</tr>
<tr>
<td>SFCCC</td>
<td>37.3 (37)</td>
<td>8.6 (1)</td>
<td>0.23 (0.23)</td>
</tr>
<tr>
<td>ALL STUDIES</td>
<td>15.2 (1489)</td>
<td>4.9 (190)</td>
<td>0.32 (0.03)</td>
</tr>
</tbody>
</table>

Incidence of NHL has decreased since introduction of ART

International Collaboration on HIV and Cancer

<table>
<thead>
<tr>
<th>STUDY</th>
<th>Adjusted incidence rate per 1000 per year (No.)</th>
<th>Rate ratio (RR) for 1997–1999 versus 1992–1996</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amsterdam</td>
<td>6.6 (16)</td>
<td>4.2 (4)</td>
</tr>
<tr>
<td>Aquitaine</td>
<td>5.1 (50)</td>
<td>3.8 (20)</td>
</tr>
<tr>
<td>ASD</td>
<td>6.0 (247)</td>
<td>3.3 (70)</td>
</tr>
<tr>
<td>CASCADE</td>
<td>4.0 (58)</td>
<td>1.8 (5)</td>
</tr>
<tr>
<td>DMI-2</td>
<td>8.3 (84)</td>
<td>5.1 (3)</td>
</tr>
<tr>
<td>HERS</td>
<td>2.7 (6)</td>
<td>1.4 (2)</td>
</tr>
<tr>
<td>HOPS</td>
<td>7.2 (37)</td>
<td>3.8 (12)</td>
</tr>
<tr>
<td>MACS</td>
<td>13.1 (86)</td>
<td>4.2 (8)</td>
</tr>
<tr>
<td>MHCS</td>
<td>5.7 (16)</td>
<td>3.7 (2)</td>
</tr>
<tr>
<td>RHIHP</td>
<td>2.8 (10)</td>
<td>9.3 (7)</td>
</tr>
<tr>
<td>SFCCC</td>
<td>12.9 (13)</td>
<td>6.2 (1)</td>
</tr>
<tr>
<td>ALL STUDIES</td>
<td>6.2 (623)</td>
<td>3.6 (134)</td>
</tr>
</tbody>
</table>

But with decreasing ADM one sees increasing NADM (USA 1991-2005)

HIV-AIDS cancer match study USA

AIDS-defining malignancy

Non-AIDS-defining malignancy

Shiels et al. 2010
So overall the NADM is has balanced the ADM...

Trends in death rate in people with HIV: D:A:D

0.0625%
0.125%
0.25%
0.5%
1%
2%

Year

99-00 01-02 03-04 05-06 07-08 09-11

Rate per 100 person-Yrs.

Liver
CVD
AIDS
Other/unknown
Cancer
All causes

Smith C et.al: Washington IAS 2012
Also not necessarily matched in endemic areas.

No change in KS incidence in Uganda despite over 100,000 persons started on HAART

Adapted from C Casper 2009
NADM as well as ADM are more common in HIV-infected patients

<table>
<thead>
<tr>
<th>Condition</th>
<th>HIV-infected (n = 20,775)</th>
<th>HIV-uninfected (n = 215,158)</th>
<th>Adjusted RR* (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>Rate/100,000 p/y</td>
<td>n</td>
<td>Rate/100,000 p/y</td>
</tr>
<tr>
<td>Anal</td>
<td>86</td>
<td>96</td>
<td>18</td>
</tr>
<tr>
<td>Hodgkin’s lymphoma</td>
<td>52</td>
<td>58</td>
<td>32</td>
</tr>
<tr>
<td>Liver</td>
<td>24</td>
<td>27</td>
<td>110</td>
</tr>
<tr>
<td>Oral/pharyngeal</td>
<td>26</td>
<td>29</td>
<td>183</td>
</tr>
<tr>
<td>Lung</td>
<td>56</td>
<td>62</td>
<td>380</td>
</tr>
</tbody>
</table>

*Adjusted for age, sex, smoking, overweight, alcohol/drug abuse, viral hepatitis.

NADM are diagnosed at a younger age in HIV infection

Age at cancer diagnosis among HIV-positive people and in the general population

- Average age at cancer diagnosis, years

Cancer

- Anal/Rectal SCC
- Hodgkin's lymphoma
- Liver
- Head and neck
- Lung
- Breast
- Prostate

* Difference between groups not statistically significant at p <0.05.
§ HIV-infected patients recruited from Ponce Clinic, 2000–2007 (n=8,300)
† General population refers to age-, race-, and sex-matched cases from the Atlanta SEER database.

And are also more aggressive/more advanced...

Hodgkin’s disease – presentation: UK

<table>
<thead>
<tr>
<th></th>
<th>HIV –ve</th>
<th>HIV +ve</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male %</td>
<td>57</td>
<td>89</td>
<td><0.001</td>
</tr>
<tr>
<td>Age (median)</td>
<td>31</td>
<td>41</td>
<td><0.03</td>
</tr>
<tr>
<td>B-symptoms %</td>
<td>40</td>
<td>81</td>
<td><0.001</td>
</tr>
<tr>
<td>WCC >15 %</td>
<td>17</td>
<td>0</td>
<td><0.001</td>
</tr>
<tr>
<td>Lymphocytes <0.6 %</td>
<td>5</td>
<td>68</td>
<td><0.001</td>
</tr>
<tr>
<td>Hb <10.5 g/l %</td>
<td>21</td>
<td>44</td>
<td><0.001</td>
</tr>
<tr>
<td>Albumin <40 g/l %</td>
<td>37</td>
<td>79</td>
<td><0.001</td>
</tr>
<tr>
<td>Bone marrow involvement %</td>
<td>4</td>
<td>45</td>
<td><0.001</td>
</tr>
<tr>
<td>Stage III-IV %</td>
<td>35</td>
<td>80</td>
<td><0.001</td>
</tr>
<tr>
<td>IPS >3 %</td>
<td>26</td>
<td>68</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Montoto BHIVA 2012
And have a reduced survival

22,081 HIV-infected and 230,069 age- and sex-matched HIV-uninfected individuals between 1996–2009 who were enrolled in Kaiser Permanente California.

Risk factors for cancer in HIV

Oncogenic viruses

Impaired immune system

Lifestyle factors

Oncogenic viruses

<table>
<thead>
<tr>
<th>AIDS-Defining</th>
<th>Oncogenic virus</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Kaposi’s Sarcoma</td>
<td>HHV-8</td>
</tr>
<tr>
<td>• Non-Hodgkin’s Lymphoma</td>
<td>EBV, HHV-8</td>
</tr>
<tr>
<td>• PCNSL</td>
<td>EBV</td>
</tr>
<tr>
<td>• Invasive Cervical Carcinoma</td>
<td>HPV</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Non-AIDS Defining (e.g.)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• Anogenital cancers</td>
<td>HPV</td>
</tr>
<tr>
<td>• Hodgkin’s Disease</td>
<td>EBV</td>
</tr>
<tr>
<td>• Leiomyosarcoma (pediatric)</td>
<td>EBV</td>
</tr>
<tr>
<td>• Squamous Conjunctival Carcinoma</td>
<td>HPV</td>
</tr>
<tr>
<td>oesophagus, larynx, lip</td>
<td></td>
</tr>
<tr>
<td>• Hepatoma</td>
<td>HBV, HCV</td>
</tr>
</tbody>
</table>
Impaired immune system – overall death rate from ADM and NADM with CD4 counts

Mortality rates by CD4 count in individuals with ADM and non-ADM

<table>
<thead>
<tr>
<th>Latest CD4 count (µL)</th>
<th>Person-years (py)</th>
<th>Non-ADM</th>
<th>Relative risk* (p)</th>
<th>ADM</th>
<th>Relative risk* (p)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rate (/1000py) (n)</td>
<td></td>
<td></td>
<td>Rate (/1000py) (n)</td>
<td></td>
</tr>
<tr>
<td><50</td>
<td>2335</td>
<td>6.0 (14)</td>
<td>15 (<0.001)</td>
<td>20.1 (47)</td>
<td>175 (<0.001)</td>
</tr>
<tr>
<td>50–99</td>
<td>2295</td>
<td>9.6 (22)</td>
<td>19 (<0.001)</td>
<td>4.8 (11)</td>
<td>41 (<0.001)</td>
</tr>
<tr>
<td>100–199</td>
<td>8097</td>
<td>6.8 (55)</td>
<td>10 (<0.001)</td>
<td>2.8 (23)</td>
<td>24 (<0.001)</td>
</tr>
<tr>
<td>200–349</td>
<td>21,048</td>
<td>2.0 (43)</td>
<td>3 (<0.001)</td>
<td>0.7 (14)</td>
<td>6 (<0.001)</td>
</tr>
<tr>
<td>350–499</td>
<td>24,052</td>
<td>1.1 (27)</td>
<td>2 (0.03)</td>
<td>0.3 (7)</td>
<td>3 (0.09)</td>
</tr>
<tr>
<td>500+</td>
<td>46,903</td>
<td>0.6 (27)</td>
<td>1 (–)</td>
<td>0.1 (5)</td>
<td>1 (–)</td>
</tr>
</tbody>
</table>

*Adjusted for cohort, age, gender, smoking status, weight, transmission group, ethnicity, prior non-fatal non-neoplastic AIDS, HCV and HBV status, cART exposure, and latest HIV-RNA level

CD4 count at which malignancy occurs varies by ADM and non-ADM and infective agent

<table>
<thead>
<tr>
<th>NHL:</th>
<th>Median CD4 range at diagnosis</th>
<th>Infective factor/co-factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burkitt’s</td>
<td>350–500</td>
<td>EBV</td>
</tr>
<tr>
<td>Diffuse large B-cell</td>
<td>10–150</td>
<td>EBV</td>
</tr>
<tr>
<td>PCNSL</td>
<td>10–50</td>
<td>EBV</td>
</tr>
<tr>
<td>KS</td>
<td>100–200</td>
<td>HHV-8</td>
</tr>
<tr>
<td>Hodgkin’s lymphoma</td>
<td>100–500</td>
<td>EBV</td>
</tr>
<tr>
<td>Castleman’s disease</td>
<td>100-300</td>
<td>HHV-8</td>
</tr>
</tbody>
</table>

Personal communication on file. Dr Edmund Willkins, 2008.
And carcinogens play a part…

• Infected tissues may be more sensitive to effects from environmental carcinogens

• Tobacco used more frequently in HIV patients
 • 1.5-3x
 • Known carcinogen for H/N, lung cancers
 • Even after controlling for smoking status increased risk observed: lung

• Often more advanced at presentation

“Well, don’t just stand there looking precancerous.”
ADM – Kaposi’s sarcoma
Patient 1

- 51y old MSM
- Admitted with PCP
 - LOW for 4 months
 - Oesophageal candidiasis
 - CD4 102, VL 430,923
- Responded to IV Co-trimoxazole and steroids
- Noticed to have purple spots on trunk:
 - Non-tender, non-pruritic
 - Also lump in the roof of his mouth with loosening teeth
What is the diagnosis?

- TB
- Kaposi’s sarcoma
- Bacillary angiomatosis
- Purpura fulminans
- Other
How would you manage this patient?

- Watch and wait till visceral
- Start ART
- Start chemotherapy
- Start ART and chemotherapy
- Other

Audience vote
Modified ACTG staging – KS

<table>
<thead>
<tr>
<th>TIS Staging of KS</th>
<th>Good risk (all of the following)</th>
<th>Poor risk (any of the following)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T) Tumour</td>
<td>Confined to skin, lymph nodes or minimal oral disease</td>
<td>Tumour-associated oedema or ulceration</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Extensive oral KS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gastrointestinal KS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KS in other non-nodal viscera</td>
</tr>
<tr>
<td>(I) Immune Status</td>
<td>CD4 count > 150/mm³</td>
<td>CD4 < 150/mm³</td>
</tr>
<tr>
<td>(S) Systemic illness</td>
<td>Karnovsky performance status > 70</td>
<td>Karnovsky performance status < 70</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Or other HIV related illness</td>
</tr>
</tbody>
</table>

T0: 5y survival with ART treatment alone 92%
T1: survival with ART and chemotherapy 85%

Modified ACTG staging – KS

<table>
<thead>
<tr>
<th>TIS Staging of KS</th>
<th>Good risk (all of the following)</th>
<th>Poor risk (any of the following)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T) Tumour</td>
<td>Confined to skin, lymph nodes or minimal oral disease</td>
<td>Tumour-associated oedema or ulceration Extensive oral KS Gastrointestinal KS KS in other non-nodal viscera</td>
</tr>
<tr>
<td>(I) Immune Status</td>
<td>CD4 count > 150/mm³</td>
<td>CD4 < 150/mm³</td>
</tr>
<tr>
<td>(S) Systemic illness</td>
<td>Karnovsky performance status > 70</td>
<td>Karnovsky performance status < 70 Or other HIV related illness</td>
</tr>
</tbody>
</table>

T0: 5y survival with ART treatment alone 92%
T1: survival with ART and chemotherapy 85%

Management of KS

1. Early stage disease:
 • ART alone
HAART alone for KS (T0)

- Starts ATAZ/r and TDF/FTC
 - Over 12w CD4 increases to 326 cells/mL and VL fall to 256 c/ml
- 80% don’t need any other treatment for KS over 10 years of follow-up
- Initial CXR clear
 - No evidence of visceral disease

AIDS 2009;23 (13):1701–6
Clinical challenges with KS

A. Diagnosing visceral disease
B. Optimal treatment when progression despite ART
C. Relapsing cutaneous disease despite good CD4
D. KS IRIS
E. Additional HHV-8 related disease
A. Diagnosing visceral disease: patient 1

- No improvement in lesions
- Increasing breathlessness
 - Had stopped co-trimoxazole when CD4 > 200 cells/mL
 - Develops large cervical LN
 - CXR becomes abnormal
What is the likely cause?

• Visceral KS
• PCP
• TB
• Cryptococcal infection
• Histoplasmosis
• Other
Patient 1 – progress

- Started IV co-trimoxazole and steroids
- CT scan thorax and abdomen
- LN biopsy and bronchoscopy
- Continued ART
A. Diagnosing visceral disease - patient 1
Patient 1 – LN biopsy

- LN biopsy shows caseating granulomata
- Starts:
 - Rifampicin
 - Isoniazid
 - Ethambutol
 - Pyrazinamide
- Symptoms, radiology improve
- But cutaneous KS progresses
Not all disease that looks like KS is KS: biopsy may be required!
B. Optimal treatment when progression despite ART – patient 1

- 4m later
 - CD4 225, VL <40
 - Cutaneous HS progressed
 - Haematemesis, Hb 9.0
How would you manage?

• Switch ART
• Give chemotherapy (what do you have)
• Arrange radiotherapy (where)
• Other

Audience vote
Management of KS

1. Early stage disease:
 • ART alone

2. Late stage disease:
 • First line: ART and
 • Liposomal anthracycline
 • (Or if unavailable - Vincristine and bleomycin)
 • Second line:
 • Paclitaxel
Treatment of KS when T1 disease or progression with ARV: liposomal anthracyclines

Mainly pre-ART

<table>
<thead>
<tr>
<th></th>
<th>Stewart et al2</th>
<th>Northfelt3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LD</td>
<td>BV</td>
</tr>
<tr>
<td>n=</td>
<td>121</td>
<td>120</td>
</tr>
<tr>
<td>CR + PR</td>
<td>59%</td>
<td>23%</td>
</tr>
</tbody>
</table>

CR = complete response; PR = partial response
A = doxorubicin, B = bleomycin, V = vincristine
LD = liposomal doxorubicin

Patient 1 – progress

- No improvement KS lesions after 4m
 - Started liposomal doxorubicin
 - Completed 6 courses
 - Flattening of all lesions
- CD4 156, VL <50 copies/mL
- TB responded
 - TB treatment stopped after 6m
Treatment of KS with Paclitaxel

• Indication:
 – Failure to respond to cyclical course of liposomal doxorubicin or early relapse

• Response rates with HAART for refractory KS have been 56–71%

• Toxicity greater: bone marrow suppression, vomiting, alopecia

• Requires pre-infusional steroids

Under study

- Bevacizumab (humanized anti-VEGF-A monoclonal antibody)
- COL-3 (MMP Inhibitor)
- Irinotecan (CPT-11) (semi-synthetic camptothecin derivative)
 - Interferon alpha
 - IL12
 - Thalidomide
C. Relapsing cutaneous disease despite good CD4

- 38y old MSM
- Diagnosed 2004
 - PCP, cutaneous KS
- Responded to HIV treatment
 - CD4 756, VL <40 c/ml
- Multiple relapses
 - Numerous S-DOX, paclitaxel courses
- Usually indolent course
- Most relapses occur within 1st year
D. KS immune reconstitution

- KS-IRS associated with:
 - Receiving ART alone
 - T1 disease
 - High HIV VL
 - High HHV8 VL
 - African cohorts
 - > risk of death

- Treatment
 - Judicious steroids
Patient 1 – progress

• No improvement KS lesions after 4m
 – Started liposomal doxorubicin
 – Completed 6 courses
 – Flattening of all lesions

• CD4 156, VL <50 copies/mL

• TB responded
 – TB treatment stopped after 6m

• Increase in left-sided lymphadenopathy
MR and PET Imaging

Lymph nodes
ADM – Non-Hodgkin’s Lymphoma
Biopsy = Non-Hodgkin’s lymphoma

- Individuals with HIV are at increased risk
- Second most common malignancy in HIV
- Several pathological types
 - Differ in prognosis, treatment and association with CD4 count
- Prognosis improved with additional HAART and approaching that seen in HIV-negative persons
- HIV-related primary effusion lymphoma (PEL) is rare
Presentation of NHL: nodal 50%

- Majority of patients present with:
 - Type B symptoms – fevers, sweats and weight loss
 - Lymphadenopathy which may be generalised or localised
GI presentation – 30%

• Extra-nodal disease is common
• Sites of extra-nodal involvement include:
 – Oral cavity
 – Liver, spleen
 – GI tract (ileum)
Other extra-nodal presentation – 20%

- Other sites
 - Pulmonary
 - Brain
 - Skin
 - Salivary glands
Primary effusion lymphoma – 1%
Clinical challenges with NHL

A. Diagnosis – especially when extranodal
B. Deciding optimal treatment
C. Awareness of drug-drug interactions
D. Salvage treatment
Diagnosis/investigation of NHL

<table>
<thead>
<tr>
<th>Summary of baseline investigations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial diagnostic histology:</td>
</tr>
<tr>
<td>Usually lymph node biopsy – confirmation by tissue biopsy critical</td>
</tr>
<tr>
<td>Lumbar puncture (not always indicated):</td>
</tr>
<tr>
<td>CSF for protein, glucose, and cytology</td>
</tr>
<tr>
<td>(intrathecal chemotherapy can be administered with the staging lumbar puncture)</td>
</tr>
<tr>
<td>Bone marrow</td>
</tr>
<tr>
<td>Biopsy and aspirate</td>
</tr>
<tr>
<td>Neck-chest-abdomen-pelvis CT scan with contrast (unless contra-indicated)</td>
</tr>
<tr>
<td>Specific investigations</td>
</tr>
<tr>
<td>Magnetic resonance imaging (MRI), Positron Emission Tomography (PET) scan, CSF for EBV (PCNSL)</td>
</tr>
</tbody>
</table>

A. Diagnosis – biopsy is critical..
Different types of NHL

<table>
<thead>
<tr>
<th>Lymphoma type</th>
<th>%</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burkitt’s</td>
<td>25</td>
<td>Higher CD4, cMYC translocation</td>
</tr>
<tr>
<td>Diffuse large B-cell (DLBCL)</td>
<td>70</td>
<td>Centroblastic</td>
</tr>
<tr>
<td>Immunoblastic</td>
<td>5</td>
<td>Associated with PCNSL</td>
</tr>
<tr>
<td>Primary effusion</td>
<td>1</td>
<td>Rare, HHV8</td>
</tr>
<tr>
<td>Peripheral T-cell</td>
<td>1</td>
<td>Rare</td>
</tr>
</tbody>
</table>
Diagnosis – imaging
Staging/prognosis of NHL

<table>
<thead>
<tr>
<th>Ann Arbor classification/Cotswolds modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage I Involvement of a single lymph node group or lymphoid structure</td>
</tr>
<tr>
<td>Stage II Involvement of 2 or more lymph node groups on the same side of the diaphragm</td>
</tr>
<tr>
<td>Stage III Involvement of lymph node groups on both sides of the diaphragm</td>
</tr>
<tr>
<td>Stage IV Involvement of extra-nodal site(s) beyond those designated ‘E’</td>
</tr>
<tr>
<td>X: Bulky disease: > 10 cm or > 1/3 widening of the mediastinum at T5-6</td>
</tr>
<tr>
<td>E: Extra-nodal extension contiguous or proximal to known nodal site of disease or single isolated site of extra-nodal disease</td>
</tr>
<tr>
<td>A/B: Absence/presence of B symptoms (weight loss > 10%, fever, drenching night sweats)</td>
</tr>
</tbody>
</table>

Staging/prognosis of NHL

- Short-term survival approaching immunocompetent patients
- Poor prognosis for PEL and Burkitt’s lymphoma or when CNS involvement
- Rituximab effective
 - Improving response rates
 - Fewer lymphoma-related deaths
- Place of bone marrow transplant not elucidated (when in CR, first relapse, or refractory disease?)

Our patient 1

• CT/PET:
 – Left sided supraclavicular mass
 – Mediastinal mass, splenomegaly
• Bone marrow clear
• CSF cytology clear
• No type B symptoms: fever, loss of weight or night sweats
• **Stage 3a**
How would you manage ART?

- Stop until finished chemotherapy
- Continue with ATAZ/r and TDF/FTC
- Switch to new combination
- Other

Audience vote
Supportive care in NHL treatment

• Start/continue ART
 – Use TDF/FTC or ABC/3TC backed regimens
 – Use INI (raltegravir or dolutegravir) or other 3rd agent not involved with CYP3A4

• Prophylaxis for:
 – Tumour lysis
 – PCP, fungal infection (fluconazole)
 – Consider also for herpes and MAI
Median survival of patients with DLCL

The overall median survival time improved from 8.3 months in the pre-HAART era to 43.2 months in the HAART era (p=0.0005)

B. Optimal treatment: Diffuse Large B-cell Lymphoma (DLBCL)

Trials evaluating chemotherapy combinations in DLBCL

<table>
<thead>
<tr>
<th>Chemotherapy regimen</th>
<th>n=</th>
<th>IPI score 2/3 (%)</th>
<th>% Complete response (CR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>da – EPOCH¹</td>
<td>39</td>
<td>59</td>
<td>74</td>
</tr>
<tr>
<td>da – EPOCH¹ (sequential rituximab) *</td>
<td>54</td>
<td>64</td>
<td>53</td>
</tr>
<tr>
<td>da – EPOCH¹ – rituximab *</td>
<td>51</td>
<td>69</td>
<td>69</td>
</tr>
<tr>
<td>CHOP² **</td>
<td>50</td>
<td>53</td>
<td>47</td>
</tr>
<tr>
<td>CHOP – rituximab² **</td>
<td>99</td>
<td></td>
<td>58</td>
</tr>
<tr>
<td>CHOP – rituximab³</td>
<td>52</td>
<td>77</td>
<td></td>
</tr>
<tr>
<td>CDE (historical controls)³</td>
<td></td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>CDE – rituximab³</td>
<td>74</td>
<td></td>
<td>70</td>
</tr>
</tbody>
</table>

* Randomised trial EPOCH with or without rituximab
** Randomised trial CHOP with or without rituximab

Rituximab effect on DLBCL treatment
C. Drug-drug interactions - DLCBL

<table>
<thead>
<tr>
<th>R-CHOP</th>
<th>PI</th>
<th>NVP</th>
<th>RAL</th>
<th>MVC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyclophosphamide*</td>
<td>■/☐</td>
<td>■</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Vincristine** O</td>
<td>■/☐</td>
<td>☐</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Doxorubicin† H</td>
<td>♦/◊</td>
<td>♦</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Prednisolone‡ P</td>
<td>■/☐</td>
<td>☐</td>
<td>◊</td>
<td>♦</td>
</tr>
<tr>
<td>Rituximab§</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Empty symbols indicate that the combination has not been studied and an interaction has been predicted based on metabolic profiles of the drugs.

*For IDV, NFV, NVP – data based on studied interactions.
**For IDV, LPV, NFV, ritonavir – data based on studied interactions.
†For IDV, NFV, SQV – data based on studied interactions.
‡For FPV, LPV, NFV, ritonavir data based on studied interactions.
§The concomitant administration of rituximab with HAART is contentious and data from further clinical trials are awaited.

Potential interaction – may require close monitoring, alteration of drug dosage/schedule

No clinically significant interaction expected

The concomitant administration of rituximab with HAART is contentious and data from further clinical trials are awaited.

Drug-drug interactions - Burkitt’s

<table>
<thead>
<tr>
<th>Options</th>
<th>PI</th>
<th>NNRTI</th>
<th>RAL</th>
<th>MVC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyclophosphamine*</td>
<td>■/☐</td>
<td>■/☐</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Vincristine**</td>
<td>■/☐</td>
<td>■/☐</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Doxorubicin†</td>
<td>♦/◇</td>
<td>♦/◇</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Methotrexate</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Ifosfamide</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Cytarabine</td>
<td>♦</td>
<td>♦</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Etosposide</td>
<td>☐</td>
<td>☐</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

- Empty symbols indicate that the combination has not been studied and an interaction has been predicted based on metabolic profiles of the drugs.
- *For IDV, NFV, NVP – data based on studied interactions.
- **For IDV, LPV, NFV, ritonavir – data based on studied interactions.
- †For IDV, NFV, SQV – data based on studied interactions.

Potential interaction – may require close monitoring, alteration of drug dosage/schedule

No clinically significant interaction expected

Data not available

ADM - Primary CNS Lymphoma...
Patient 2

- 28y old female SSA
- Presented with infected son; known +ve
 - Cutaneous KS
 - Mild hemiparesis
 - CD4 27
 - CSF: LC 24, protein 0.8, CRAG -ve
- No improvement with 2w anti-toxoplasma Rt
- CSF:
 - EBV +ve
- PET scan
- Brain Bx
Clinical challenges with PCNSL

A. Diagnosing cause
B. Improving treatment
C. Improving prognosis
A. Diagnosis – imaging

<table>
<thead>
<tr>
<th>MR FEATURES</th>
<th>PCNSL</th>
<th>TOXOPLASMOSIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>Single-few</td>
<td>Usually multiple</td>
</tr>
<tr>
<td>Enhancement</td>
<td>Prominent Homogeneous</td>
<td>Prominent</td>
</tr>
<tr>
<td>Oedema</td>
<td>Mild-moderate</td>
<td>Marked</td>
</tr>
<tr>
<td>Location</td>
<td>Periventricular</td>
<td>Basal ganglia, Brain stem, Cortex, anywhere</td>
</tr>
<tr>
<td>MR T1</td>
<td>Low to isodense</td>
<td>Low signal</td>
</tr>
<tr>
<td>MR T2</td>
<td>Variable</td>
<td>High signal</td>
</tr>
</tbody>
</table>
Additional imaging

- CT body (diagnosis)
- USS testes
- 201 Thallium SPECT
- 18FDG-PET (positron emission scanning):
 - Lesions show increased uptake
 - Toxoplasmosis lesions are metabolically inactive
After 2w toxoplasma treatment – no improvement
A. Diagnosis: CSF & biopsy

• AIDS-defining cancer
• CSF (if safe):
 – Often shows raised protein
 – Approximately 20% have abnormal cytology with malignant cells
 – EBV DNA +ve in >90% with > 90% specificity

• Biopsy:
 – With the exception of those who are terminally ill, a pathologic diagnosis is required
B. Treatment: high-dose Methotrexate

• A central place of high-dose IV MTX in HIV-related PCNSL therapy is supported by:
 – Data in HIV-negative PCNSL
 – Better survival with chemotherapy than radiotherapy in non comparative studies
 – Relatively low neurotoxicity compared to radiotherapy
 – Relatively good tolerability compared to chemotherapy with multiple agents
 – Relapse rare if HAART options available

• Place of Rituximab in addition to high-dose MTX under study
B. Treatment – HAART/prognosis

• Consistent but slight improvement in overall survival in HAART era
 – median 32d (5-315d) vs. 48d (15-1136d)
• Benefit restricted to patients:
 – Not on HAART at diagnosis of PCNSL
 – Receive additional chemotherapy or radiotherapy
 • Lower rate of relapse
 • Enhanced rate of remission
• Spontaneous remissions have rarely been reported with HAART alone
B. Treatment - radiotherapy

- Use whole brain radiotherapy for symptom control or as alternative to first-line treatment if risk of toxicity from high-dose IV agents unacceptable.
3m post methotrexate and ART

- She is given high-dose IV methotrexate and her HAART is optimised
Patient progress..

• Amazing
 – Slight hemiparesis but functioning normally

• CD4 >400 cells/µl VL <40 c/ml

• Now 4y since diagnosis
• Discharged by oncologist
Be alert - paradoxical reaction can occur in PCNSL

• Diagnosis PCNSL
 – Treatment methotrexate and rituximab
 – Responded well
• After 3rd cycle of R-M deteriorated and intubated
• Responded after high-dose steroids
 – Returned to baseline function
 – CD4 271
NADM – Hodgkin’s Lymphoma and anal cancer
Patient 3

- 37y-old White French born ex-IDU for 8y
- Lived in Spain till 2005, travelled Asia/Europe ++
- Presented with 6w history of fever, sweats, loss of weight
- Non-adherent to medication
- HIV+ve, CD4 180 cells/mm3, VL 295,000 c/ml
- On methadone
Chronology of symptoms

- Fevers/sweats
- Loss of weight
- Neck nodes

Weeks
Hodgkin lymphoma

- Commoner in PLWH x10–20
- Post-cART rates for CR/overall survival/disease-free survival same as for HIV-negative patient
- Increased incidence with CD4 <200 cells/ml, and CD4 count may fall 1 year pre-HL diagnosis
- EBV-driven
Clinical challenges with Hodgkin disease

A. Not missing the diagnosis, especially when extra-nodal
B. Deciding optimal treatment
C. Awareness of drug-drug interactions
D. Salvage treatment
A. Not missing the diagnosis - differential diagnosis for patient

- Fever/weight loss:
 - Opportunistic infections:
 - Mycobacterial (MAI and MTB)
 - NHL
 - Castleman’s disease
 - Syphilis

- Lymphadenopathy:
 - NHL
 - TB, mycobacterium avium intracellulare (MAI), or another atypical mycobacteria
 - +/- IRIS
 - Castleman’s disease
 - Reactive lymphadenopathy
A. Not missing the diagnosis

• 90% have ‘B’ symptoms
• 74–92% have advanced stages of disease
• Frequent involvement of extra-nodal sites:
 – Bone marrow (40–50%)
 – Liver (15–40%) and spleen (20%)
• HIV-HL tends to develop as an earlier manifestation of HIV
• Higher CD4
Diagnosis/investigation of Hodgkin’s disease

Summary of baseline investigations

<table>
<thead>
<tr>
<th>Initial diagnostic histology:</th>
<th>Usually lymph node biopsy – confirmation by tissue biopsy critical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lumbar puncture:</td>
<td>CSF for protein, glucose, and cytology (intrathecal chemotherapy can be administered with the staging lumbar puncture)</td>
</tr>
<tr>
<td>Bone marrow</td>
<td>Biopsy and aspirate in all patients (higher incidence of BM involvement in HIV-infected patients)</td>
</tr>
<tr>
<td>Neck-chest-abdomen-pelvis CT scan with contrast</td>
<td></td>
</tr>
<tr>
<td>Specific investigations</td>
<td>MRI, PET scan</td>
</tr>
</tbody>
</table>

A. Diagnosing Cause: histology

- Increased nodular sclerosis and decreased mixed cellularity
- Reed-Sternberg cell
- EBV association
Staging/prognosis of Hodgkin’s disease

<table>
<thead>
<tr>
<th>Ann Arbor classification/Cotswolds modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage I Involvement of a single lymph node group or lymphoid structure</td>
</tr>
<tr>
<td>Stage II Involvement of 2 or more lymph node groups on the same side of the diaphragm</td>
</tr>
<tr>
<td>Stage III Involvement of lymph node groups on both sides of the diaphragm</td>
</tr>
<tr>
<td>Stage IV Involvement of extra-nodal site(s) beyond those designated ‘E’</td>
</tr>
<tr>
<td>X: Bulky disease: > 10 cm or > 1/3 widening of the mediastinum at T5–6</td>
</tr>
<tr>
<td>E: Extra-nodal extension contiguous or proximal to known nodal site of disease or single isolated site of extra-nodal disease</td>
</tr>
<tr>
<td>A/B: Absence/presence of B symptoms (weight loss > 10%, fever, drenching night sweats)</td>
</tr>
</tbody>
</table>

Deciding optimal treatment
ART and ABVD

- Good prognosis associated with:
 - Mixed cellularity subtype
 - Absence of extra-nodal involvement,
 - Absence of B symptoms
 - Prior use of HAART

- Overall and complete response rates to ABVD were 91% and 83%,
 - IPS and CD4 associated
Cumulative survival of HD patients who respond to HAART

Median survival was 18.6 months in patients without HAART response, but was not reached in patients that responded to HAART (89% overall survival at 24 months vs. 44%)

Awareness of drug-drug interactions

ABVD-HAART interactions

<table>
<thead>
<tr>
<th>ABVD</th>
<th>PI</th>
<th>NNRTI</th>
<th>RAL</th>
<th>MVC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Doxorubicin</td>
<td>![Yellow]</td>
<td>![Yellow]</td>
<td>![Blue]</td>
<td>![Yellow]</td>
</tr>
<tr>
<td>Bleomycin</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Vinblastine</td>
<td>![Yellow]</td>
<td>![Yellow]</td>
<td>![Blue]</td>
<td>–</td>
</tr>
<tr>
<td>Dacarbazine</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

- **Yellow** - Potential interaction – may require close monitoring, alteration of drug dosage or timing of administration
- **Blue** - No clinically significant interaction expected

Anal cancer

Diagnosis/Investigation of Anal Cancer\(^2\)

- Twice as common in HIV-infected men who have sex with men (MSM):
 - Baseline and nadir CD4 count <200
 - Older age
 - RR 37 for HIV-infected men and 6.8 for women

- Diagnosis:
 - Biopsy essential
 - Majority squamous cell carcinomas
 - Relationship and benefits of screening uncertain

Clinical challenges with anal cancer

A. Not attributing cause to another diagnosis
B. Deciding optimal treatment
C. Place of vaccine
A. Not attributing cause to another diagnosis

- Bleeding – present in half and usually 1st sign
- Mass – wart like or ulcerative
- Itching – more common with AIN
- Pain – present in one third usually post defaecation
- Change in bowel habit
- Localised inguinal lymphadenopathy
Anal Cancer Survival has improved significantly

Stage distribution & 5-year relative survival by stage at diagnosis (1999–2006), all races, both sexes

<table>
<thead>
<tr>
<th>Age</th>
<th>Stage distribution(%)</th>
<th>5-yr relative survival (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Localised (confined to primary site)</td>
<td>50</td>
<td>80.1</td>
</tr>
<tr>
<td>Regional (spread to regional LN)</td>
<td>29</td>
<td>59.8</td>
</tr>
<tr>
<td>Distant (cancer has metastasized)</td>
<td>12</td>
<td>30.5</td>
</tr>
<tr>
<td>Unknown (unstaged)</td>
<td>9</td>
<td>56.0</td>
</tr>
</tbody>
</table>

HR = 14.1 (95% CI = 5.2–38.6)
B. Deciding optimal treatment

- Treatment:
 - **Chemoradiotherapy:**
 - 5FU and mitomycin
 - Surgical excision required if:
 - Small lesions, persistent or recurrent tumour after chemoradiotherapy
C. Place of Vaccine

<table>
<thead>
<tr>
<th>HPV Type</th>
<th>Approximate Disease Burden</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 and 18</td>
<td>70% of cervical cancer</td>
</tr>
<tr>
<td></td>
<td>70% of anal cancer, AIN</td>
</tr>
<tr>
<td></td>
<td>Targeted in both quadrivalent and bivalent vaccines</td>
</tr>
<tr>
<td>6, 11, 16, and 18</td>
<td>35%–50% of all CIN 1</td>
</tr>
<tr>
<td></td>
<td>90% of genital warts</td>
</tr>
<tr>
<td></td>
<td>Targeted in quadrivalent vaccine</td>
</tr>
</tbody>
</table>

Available HPV vaccines target types common to oncogenesis of all genital sites.
Vaccine should logically prevent anal outcomes.

Summary

- Most HIV-infected MSM have HPV infection
- Most of these patients have abnormal cytology
- Most patients with abnormal cytology have abnormal biopsies
- Sensitivity/specificity cytology = cervical screening
- Most patients with early AIN progress to AIN 3
- AIN 3 rarely regresses
- AIN 3 progresses to SCC
- SCC worse prognosis
- Vaccine has a place.
Outline

• Differing knowledge and differing requirements...

• Today I will break it down:
 – Basic facts
 – Clinical challenges in ADM and non-ADM
 – Management

• Hopefully you have interrupted....
Thank you

For further information please contact:

Jean-Marc Debricon
CEO
jm@greenshootsfoundation.org
Mobile: +44 7595 600 766

UK charity number 1138412 US 501(c)(3) registered

General enquiries: info@greenshootsfoundation.org
Website: www.greenshootsfoundation.org